Solutions - Homework 4

(Due date: November 16th @ 11:59 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (14 PTS)

• Complete the timing diagram of the following circuit. $G = G_3G_2G_1G_0$, $Q = Q_3Q_2Q_1Q_0$

PROBLEM 2 (18 PTS)

• Complete the timing diagram of the following bit-serial adder. DX=1011, DY=1010. (8 pts)

1

- The following FSM has 4 states, one input w and one output z. (10 pts)
 - ✓ The excitation equations are given by:
 - $Q_1(t+1) \leftarrow Q_0(t)$
 - $Q_0(t+1) \leftarrow \overline{Q_1(t) \oplus w}$
 - ✓ The output equation is given by: $z = Q_1(t) \oplus \overline{Q_0(t)} \oplus w$
 - ✓ Is it a Mealy or Moore Machine? Why?
 - ✓ Provide the State Diagram (any representation) and the Excitation Table. (6 pts)
 - ✓ Sketch the Finite State Machine circuit. (3 pts)

State Assignment:

S0: Q=00 S1: Q=01 S2: Q=10 S3: Q=11

PROBLEM 3 (21 PTS)

• Sequence detector: This FSM has to generate z = 1 when it detects the sequence 1010 or 0110. Once the sequence is detected, the circuit looks for a new sequence. Note that once we start detecting a sequence, we prioritize the sequence that we have over the other (e.g.: last sequence inside a dotted red rectangle is not considered).

- Draw the State Diagram (any representation), State Table, and the Excitation Table of this circuit. (14 pts)
- Provide the excitation equations and the Boolean equation for z (simplify your circuit: K-maps or Quine-McCluskey) (4 pts)

2

- Sketch the circuit. Is this a Mealy or a Moore machine? Why? (3 pts)
- State Diagram, State Table, and Excitation Table:

State Assignment:

S0: Q=00 S1: Q=01 S2: Q=10 S3: Q=11

This is a Mealy FSM. The output \boldsymbol{z} depends on the input as well as on the present state.

х	PRESENT STATE	NEXT STATE	z
0 0 0	S1 S2 S3	S5 S3 S5	0 0 0
0 0 0	S4 S5 S6	S1 S5 S3	1 0 0
0	S7 S1	S1 S2	1 0
1	S2 S3	S2 S4	0
1 1 1	S4 S5 S6	S7 S6 S7	0 0 0
1	S 7	S2	0

PRESENT STATE	NEXTSTATE		
$x Q_2Q_1Q_0(t)$	$Q_2Q_1Q_0$ (t+1) z		
0 0 0 0	1 0 0 0		
0 0 0 1	0 1 0 0		
0 0 1 0	100 0		
0 0 1 1	000 1		
0 1 0 0	100 0		
0 1 0 1	0 1 0 0		
0 1 1 0	000 1		
0 1 1 1	X X X X		
1 0 0 0	0 0 1 0		
1 0 0 1	0 0 1 0		
1 0 1 0	0 1 1 0		
1 0 1 1	1 1 0 0		
1 1 0 0	1 0 1 0		
1 1 0 1	1 1 0 0		
1 1 1 0	0 0 1 0		
1 1 1 1	X X X X		

Excitation equations, Boolean equation, minimization, and circuit implementation: $Q_2(t+1)$

$Q_2(t+1) \leftarrow \overline{x}\overline{Q_2}\overline{Q_0} + Q_2\overline{Q_1}\overline{Q_0} + xQ_2\overline{Q_1} + xQ_1Q_0$
$Q_1(t+1) \leftarrow \bar{x}\overline{Q_1}Q_0 + x\overline{Q_2}Q_1 + Q_2Q_0$
$Q_0(t+1) \leftarrow x\overline{Q_0} + x\overline{Q_2}\overline{Q_1}$
$z = \bar{x}Q_1Q_0 + \bar{x}Q_2Q_1$

+1) _{_xQ}	2			Q_1
Q_1Q_0	00	01	11	10
00	1	1	1	0
01	0	0	1	0
11	0	Х	X	1
10	1	0	0	0

$(t+1)$ $\times \mathbb{Q}_2$				
Q ₁ Q ₀	00	01	11	10
00	0	0	0	0
01	1	1	1	0
11	0	Х	Х	1
10	0	0	0	1

$Q_0(t+1)$ $\times Q_2$					
Q_1Q_0	00	01	11	10	
00	0	0	1	1	
01	0	0	0	1	
11	0	Х	Х	0	
10	0	0	1	1	

PROBLEM 4 (15 PTS)

- Draw the State Diagram (in ASM form) of the FSM whose VHDL description in shown below. <u>Is it a Mealy or a Moore FSM?</u>
- Complete the Timing Diagram.

```
library ieee;
use ieee.std_logic_1164.all;
entity circ is
   port ( clk, resetn: in std_logic;
        r, p, q: in std_logic;
        x, w, z: out std_logic);
end circ;
architecture behavioral of circ is
   type state is (S1, S2, S3);
   signal y: state;
```



```
begin
  Transitions: process (resetn, clk, r, p, q)
  begin
     if resetn = '0' then y <= S1;
     elsif (clk'event and clk = '1') then
        case y is
          when S1 =>
             if r = 0 then y \le 2;
             else
                if p = '1' then y \le S3; else y \le S1; end if;
             end if;
           when S2 =>
             if p = '1' then y \le S1; else y \le S3; end if;
          when S3 =>
            if p = '1' then y \le S3; else y \le S2; end if;
        end case:
     end if;
  end process;
  Outputs: process (y, r, p, q)
  begin
      x <= '0'; w <= '0'; z <= '0';
      case y is
         when S1 => if r = '1' then z <= '1'; end if;
          when S2 \Rightarrow if r = '0' then x \Leftarrow '1'; end if;
                     if p = '0' then w \le '1'; end if;
          when S3 \Rightarrow x \Leftarrow '1';
      end case;
  end process;
end behavioral;
```


4

PROBLEM 5 (17 PTS)

• "Counting 1's" Circuit: It counts the number of bits in register A that has the value of '1'. Example: for n = 8: if A = 00110010, then C = 0011. The circuit includes an FSM and a datapath circuit. The behavior of the generic components is as follows:

```
m-bit counter (modulo-n+1): If E=0, the count stays.
                                                              n-bit Parallel access shift register: If E=0, the output is kept.
                                                               if E = 1 then
if E = 1 then
    if sclr = 1 then
                                                                   if s l = '1' then
       Q \leftarrow 0
                                                                      Q \leftarrow D
    else
                                                                   else
       \text{Q} \leftarrow \text{Q+1}
                                                                      Q ← shift in 'din' (to the right)
  end if;
                                                                 end if;
end if;
                                                              end if;
```

• Complete the timing diagram where n = 8, m = 4. A is represented in hexadecimal format, while C is in binary format.

PROBLEM 6 (15 PTS)

Attach a printout of your Project Status Report (no more than 3 pages, single-spaced, 2 columns). This report should contain
the current status of the project, including more details about the design and its components. You <u>MUST</u> use the provided
template (Final Project - Report Template.docx).